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Low-rank perturbations and the spectral statistics of pseudointegrable billiards
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We present an efficient method to solve Schro¨dinger’s equation for perturbations of low rank. The method is
ideally suited for systems with short range interactions or quantum billiards. It involves a secular equation of
low dimension, which directly returns the level counting function. For illustration, we calculate the number
variance for two pseudointegrable quantum billiards: the barrier billiard and a right triangle billiard. In this
way, we obtain precise estimates for the level compressibility in the semiclassical~high energy! limit. In both
cases, our results confirm recent theoretical predictions, based on periodic orbit summation, disregarding
diffractive orbits.
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Consider a bound quantum system with Hamilton
H5H01W, where the eigenbasis ofH0 is known, and the
perturbationW is non-negative~nonpositive! and of low
rank. Then, our method allows to obtain the level count
function, by solving an eigenvalue problem of the dimens
which is equal to the rank of the perturbation. This possib
ity is an important further development of the first impl
mentation in Ref.@1#. The class of systems which fulfill th
above requirements is large. Quite evidently, few parti
systems with short range residual interactions, e.g., Ref.@2#,
fall into this category. Quantum billiards can also be cons
ered. To see this, choose forH0 an integrable billiardB0,
which encloses the billiardB of interest. Then, the boundar
can be modeled by a potential with a one-dimensio
d-shaped profile, which is of low rank in the Hilbert space
H0. As a result, the spectrum ofH contains the desired ei
genvalues ofB and those of its complementB02B. They
can be separated with the help of an appropriate observa
and in some cases, e.g., the Sinai billiard, and the exam
considered below, the separation is given beforehand.

We illustrate our method with two examples, the barr
billiard @3#, and the right triangle billiard@4# with acute angle
p/5. Both examples are two-dimensional, pseudointegra
polygon billiards@4,5#. While pseudointegrable systems ha
enough constants of motion to assure local integrability, s
gularities in the Hamiltonian flow allow invariant surface
with genus larger than one. This introduces some kind
randomness into the classical dynamics, though
Lyapunov exponent is equal to zero, everywhere. The n
standard topology of the invariant surfaces leads to an a
braic dispersion of nearby trajectories@6#.

In the spirit of quantum-classical correspondence, th
have been numerous efforts to study the implications
pseudointegrability on the quantum spectrum@1,5,7–10#. In
Refs.@8,11# it is conjectured that the statistical properties
pseudointegrable billiards are intermediate between Pois
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statistics, typically related to integrable systems@12#, and the
statistics of the Gaussian orthogonal ensemble@13#, related
to fully chaotic ~time reversal invariant! systems. The so-
called ‘‘intermediate statistics’’ has also been observed
disordered, mesoscopic systems at the metal-insulator tra
tion @14#, for systems with interacting electrons@15#, and for
incommensurate double-walled carbon nanotubes@16#.

A suitable measure for intermediate spectral statistics
the level compressibilityx5 limL→` S2(L)/L, whereS2(L)
is the number variance@13# for energy intervals of lengthL
~measured in units of the average level spacing!. Note thatx
coincides with the value of the spectral two-point form fac
in the limit of small times. Recently, analytical results forx
became available for a certain class of right triangle billia
@17#, as well as for the barrier billiard@10#. These results are
based on the diagonal approximation and on the assump
that diffractive orbits do not contribute. In particular the la
ter assumption is questionable because diffraction is an
portant mechanism in the development of intermediate
tistics. Unfortunately, numerical studies could not confi
those results with the desirable clarity, since the converge
to the semiclassical limit is very slow. For example in t
case of the barrier billiard one obtainsx'0.34 in the region
between level number 400 000 and 420 000, while the se
classical prediction isx51/2 @10#.

As shown below, our method is almost ideally suited f
the calculation of the number variance for largeL. Therefore,
we are able to calculate the level compressibility at mu
higher energies and with better statistics. In the case of
barrier billiard, for example, we calculate number varianc
in the region of absolute level numberN.1.63107 within
an energy interval which contains about 105 levels.

Here we only sketch the general method~a detailed pre-
sentation will be published elsewhere!. Assume, that the
HamiltonianH can be approximated by a projection on
appropriately chosenN-dimensional Hilbert space,N,`.
Assume further that its matrix representation is of the follo
ing form:

H5H01h V V†. ~1!
©2003 The American Physical Society05-1
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HereV is a N3M matrix with mutually orthogonal column
vectors,M,N, andh is a positive parameter. Such a repr
sentation can be obtained, for instance, by diagonalizin
non-negative perturbation of small rankM. Then, in general,
the spectrum ofH consists of a trivial componentS0, con-
tained in the spectrum ofH0, and a nontrivial, disjoint com-
ponentS1. The eigenvalues inS1 are roots of the secula
equation

det@12hK~E!#50, K~E!5V†
1

E2H0
V, ~2!

where dim@K(E)#5M @1#. Equation~2! can be considered
as an eigenvalue equationK(E)xW5dxW , where one of the
eigenvalues must be equal toh21.

Differentiating K(E) with respect to the energy gives
negative definite matrix. This shows that the eigenvalues
K(E) are monotonously decreasing. The eigenvalues ofH0
coincide with the positions of the poles ofK(E). Therefore,
each time the energy moves across a pole, a new eigenv
of K(E) appears at1`. The eigenvalue decreases with e
ergy, until it reaches the value 1/h. At this point the secular
equation~2! has a root. Beyond this point, the eigenval
continues to decrease, until it disappears at2`. This behav-
ior gives rise to the followingsum rule: Let n0(n1) denote
the number of eigenvalues ofK, larger than 1/h, at
E5E0(E1), and letNp denote the number of poles andNr
the number of roots of det@K(E)# in the interval (E0 ,E1).
Then it holds

n01Np2Nr5n1 . ~3!

This relation can be used to bracket the eigenvalues inS1,
before using a standard root searching algorithm to ob
the desired accuracy. In this case, Eq.~3! assures that no
eigenvalues are overlooked. However, if only long range c
relations are of interest, one can do even better. It may t
be sufficient to calculate the level counting function at t
points of a previously defined grid, with possibly quite lar
spacings.

To calculate the spectrum of the barrier billiard@10#, we
choose asH0 the Hamiltonian of a rectangle billiard with
sides of lengtha andb. With the origin of a Cartesian coor
dinate system fixed at one of the corners, the normali
eigenfunctions are

Cmn~x,y!52~ab!21/2sin~pmx/a!sin~pny/b!, ~4!

while «mn5@(m/a)21(n/b)2#p2/2 are the corresponding e
genvalues. We use units, in which the mass and Plan
constant\ are both equal to one. The perturbation consists
an additional boundary segment inside the billiard, conne
ing the points (a0,0) and (a0 ,c). It is modeled by a potentia
well with d-shaped profile

H5H01hW, W5~a/2!d~x2a0!u~c2y!, ~5!

whered(x) is the usuald function, andu(y) is the unit step
function. As h increases from 0 tò , the spectrum ofH
changes from the spectrum of the rectangle billiard to
06520
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spectrum of the barrier billiard. In what follows we seta0
5a/2,c5b/2, wherea52p3/2/3 andb56/p1/2. In this way,
we obtain the same spectrum as in Ref.@10#. In this case the
trivial componentS0 of the spectrum corresponds to stat
Cmn with a node line atx5a/2. In order to obtain the non
trivial component alone, we require the eigenstates to be
flection symmetric with respect to that line. In other word
we consider the spectrum of a new rectangle billiard w
sidesa/2 andb, which has Dirichlet boundaries everywher
except for the boundary segment between the po
(a/2,b/2) and (a/2,b), which is a von Neumann boundary

To obtain the decompositionW5V VT, we calculate all
eigenvectors ofW which correspond to nonzero eigenvalue
This is rather simple becauseW is separable in thex and y
modes of the eigenfunctions ofH0

Vmn
(a)5s~m!Ãn

(a) , s~m!5sin~pm/2!, ~6!

Ã2n
(a)5

dna

A2
, Ã2n21

(a) 5
A2a

p

~2 !a1n

a22~n21/2!2
. ~7!

For the matrix elements ofK(E) we get

Kab~E!5(
mn

Vmn
(a)Vmn

(b)

E2«mn
5(

mn
Ãn

(a)Ãn
(b) s~m!2

E2«mn
. ~8!

Taking the limit m→`, we can evaluate the sum overm
analytically

Kab~E!5
a2

2p (
n

Ãn
(a)Ãn

(b)Gn~E!, ~9!

with Gn(E)52tan(pzn/2)/zn . Here, zn is the effective
quantum number forH0 at given energyE, i.e., (znp/a)2

1(np/b)252E. Note that Gn(E) remains real, even for
imaginary zn . We may introduce the orthogonal matr
Anm5A2Ã2m21

(n) , and truncating the sum in Eq.~9! at n
5M , we obtain

K~E!5
a2

4p
~A GoddAT1Geven!, ~10!

with Godd5diag@G2n21(E)#, and Geven5diag@G2n(E)#.
Multiplying Eq. ~10! from left and/or right byAT and/orA,
one can construct the variants:L5ATK, K85ATKA, and
L85KA. All of them can be used to find the eigenvalues
the barrier billiard. However, the matricesK(E) andK8(E)
are real and symmetric, and hence easy to diagonalize
nally, due to faster numerical convergence, we opted
K8(E).

In what follows, we aim at a precise, numerical estima
for the level compressibility, which can be compared to t
analytical results obtained in Refs.@10,11#. To this end, we
compute the level counting function on a finite gr
N0 ,L tot ,Lst of consecutive intervals of lengthLst, starting at
N0 and ending atN01L tot . The grid is defined on the un
folded energy axis, where the average level spacing is e
to one. It is then mapped onto the physical energy axis,
5-2
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inverting Weyl’s law @18#: 4p N(E)5ab E2(a1b) A2E
1p/4. We count the number of levels in each interval, us
Eq. ~3!. The data sets, listed in Table I, are produced in t
way. They are used to calculate the number varianceS2(L)
at integer multiples ofLst510.

The number varianceS2(L) saturates atL'Lmax, which
is related to the inverse period of the shortest~nondiffractive!
periodic orbit@19#. For our barrier billiard

Lmax5A2p N0 b/a5A18N0 /p. ~11!

Therefore, the ratioS2(L)/L being constant at 1!L!Lmax
starts to decrease whenL approachesLmax. We expect that
S2(L)/L plotted versusL/Lmax depends only weakly on
Lmax, and hence onN0. We call this function thescaled
number variance:

g~x!5S2~Lmaxx!/~Lmaxx!. ~12!

For integrable and pseudointegrable systems, it is expe
that the ratioS2(L)/L becomes constant asL is increased. In
practice, convergence is quite fast, and it turned out thaL
'10 is sufficient for our purposes. The semiclassical lim
N0→` is the really difficult one. There, the level compres
ibility must be estimated by extrapolation,x5 limx→0 g(x).

Figure 1 shows the scaled number variance for the d
sets given in Table I. For the error bars, we estimated that
relative error is approximately equal to 1.6AL/L tot. To obtain
this value, we computed the variance of the distribution
different partial averages, fitting them with a normal dist
bution. Note thatL tot /L gives the number of independe
level counts in the energy range considered. Figure 1

TABLE I. Data sets for the barrier billiard.

~A! ~B! ~C! ~D!

N0583105 23106 83106 1.63107

L tot5105 1.43105 105 105

FIG. 1. The scaled number varianceS2(L)/L vs x5L/Lmax for
the data sets in Table I. For clarity, only some of the data points
plotted. The thick solid line gives the fit functiong(x) with param-
eters as given in Eq.~14!.
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plains the discrepancy between the numerical estimate
the level compressibility obtained in Ref.@10#, and the the-
oretical expectation. Forx.0.01 the scaled number varianc
looks perfectly linear, and one is easily lead to assume
the linear behavior continues down to the pointx50. How-
ever, forx,0.01, the slope changes drastically, and a sec
linear regime appears. There, the scaled number varia
g(x) approaches the theoretical predictionx51/2 asx→0.
In order to put our findings on a quantitative basis, we co
sider the following phenomenological parametrization:

g~x!5a22a1x1~a02a2!exp~2a3x!. ~13!

Its form is such that both linear regimes are reproduc
While a05g(0) gives the best estimate forx in the semi-
classical limit,a2 would be the result in the absence of da
points with x,0.01. For the fit, all data sets in Table I a
taken into account, up tox50.2. Beyond this point~which is
outside the interval shown in Fig. 1! the parametrization~13!
breaks down. Using the nonlinear least squares Marqua
Levenberg algorithm@20#, we obtain the following estimates

a050.5008~91!, a151.077~18!,

a250.3866~17!, a35364~39!, ~14!

with a reducedx2 value of xfit
2 / f '0.54 ~the number of de-

grees of freedom isf 5305).
With a0, we have finally obtained a precise numeric

estimate for the level compressibility in the semiclassi
limit. It agrees within a relative error of roughly 2% with th
theoretical resultx51/2. In addition, the moderate value fo
xfit

2 is quite remarkable. It gives some support to the assu
tion that within the statistical error, the scaled number va
ance is independent of the energy region~for x&0.2).

In what follows, we repeat the numerical analysis for t
p/5-right triangle billiard. For this system, the matrixK(E)
has been calculated in Ref.@1#. The length scaleLmax, for
the saturation of the number variance, is here about 2.6 ti
smaller than for the barrier billiard

Lmax5A2p N0 /~8 sin 2a! a5p/5, ~15!

We calculated three data sets in different energy regions
listed in Table II (Lst510, as before!. With all data sets, we
fit the scaled number varianceg(x) using the parametrization
~13!, excluding again all data points withx.0.2. The result-
ing estimates are

a050.5385~57!, a150.958~37!,

a250.4154~54!, a3546.2~5.4!, ~16!

re

TABLE II. Data sets for the right triangle billiard (a5p/5).

(T1) (T2) (T3)

N0543105 106 43106

L tot543104 105 105
5-3
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with a reducedx2 value of xfit
2 / f '0.20 (f 561). The nu-

merical results forg(x), and the fit with Eq.~13!, are plotted
in Fig. 2. For the error bars, we have checked that the s
approximation holds as in the case of the barrier billiard. T
absolute errors are smaller here, because the data set
taken at lower energies. As in Fig. 1, we find two line
regimes with different slopes. However, the initial slope
less steep, and the transition occurs somewhat later,x
'0.04. Thus, the overall change in the graph is less p

FIG. 2. The scaled number variance for the data sets in Tabl
Only a subset of the data points is plotted. The solid line gives
fit g(x) with parameters as given in Eq.~16!.
B
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nounced. Though the agreement of the extrapolated value
g(0) with the theoretical expectationx55/9 @17# is not per-
fect, our estimate is very close to it. Note that the error e
mates in Eq.~16! are also based on statistical data. In p
ticular in the case ofa0, there are only relatively few
relevant data points, which leads to rather large uncertain

We advanced the technique, recently proposed in Ref.@1#,
to solve the Schro¨dinger equation for perturbations of low
rank. As a new result, we derived asum rule, which allows to
obtain the level counting function directly from the secu
equation. Systems involving short range interactions a
general quantum billiards may be good candidates for fut
applications. In this paper, we considered two pseudoin
grable billiards: the barrier billiard and thep/5-right triangle
billiard. In spite of their apparent simplicity, the spectral s
tistics is only hardly understood. We performed extens
numerical calculations for the number varianceS2(L),L
@1 in energy regions up toN.1.63107 ~for the barrier
billiard! andN.43106 ~for the right triangle billiard!. With
the help of the scaled number variance, we obtained v
precise estimates for the level compressibility. In contras
earlier numerical studies, they largely confirm the analyti
results. This shows that diffraction is not the basic mec
nism leading to intermediate statistics.
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