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Low-rank perturbations and the spectral statistics of pseudointegrable billiards
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We present an efficient method to solve Schinger’s equation for perturbations of low rank. The method is
ideally suited for systems with short range interactions or quantum billiards. It involves a secular equation of
low dimension, which directly returns the level counting function. For illustration, we calculate the number
variance for two pseudointegrable quantum billiards: the barrier billiard and a right triangle billiard. In this
way, we obtain precise estimates for the level compressibility in the semiclagsigialenergy limit. In both
cases, our results confirm recent theoretical predictions, based on periodic orbit summation, disregarding
diffractive orbits.
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Consider a bound quantum system with Hamiltonianstatistics, typically related to integrable systdrh2], and the
H=Hy+W, where the eigenbasis &f, is known, and the statistics of the Gaussian orthogonal ensenjib&, related
perturbationW is non-negative(nonpositivé and of low to fully chaotic (time reversal invariantsystems. The so-
rank. Then, our method allows to obtain the level countingcalled “intermediate statistics” has also been observed in
function, by solving an eigenvalue problem of the dimensiond_'sordered, mesoscopic systems at the metal-insulator transi-
which is equal to the rank of the perturbation. This possibil-ion [14], for systems with interacting electrofs5], and for
ity is an important further development of the first imple- INcommensurate double-walled carbon nanotjié$

L : . A suitable measure for intermediate spectral statistics is
mentation in Ref[1]. The class of systems which fulfill the P 2 >
above requirements is large. Quite evidently, few particle;tget’hlgvﬁlljr%%':fszsrisé?l'gg%]_;g?'—e?lzrz (:;‘1)t{a Lr\’/;;’shfjrﬁ?n“{&
systems with short range residual interactions, e.g., [R&f. gy 9

X . - . (measured in units of the average level spaciipte thaty
fall into this cate_gory. Quantum b|II|_ards can als_o_be Cor]S'd'coincides with the value of the spectral two-point form factor
ered. To see this, choose fély an integrable billiard,,

. o ¢ in the limit of small times. Recently, analytical results fpr
Whlclenclozesl tgebbllllarﬂ? Otf |r1[t_elrest_.t;'hen, thedt_)oundary ecame available for a certain class of right triangle billiards
can be modeled by a potential with a one-dimensionar; 71 a5 \el| as for the barrier billiarfl0]. These results are
d-shaped profile, which is of low rank m_the Hilbert space Ofbased on the diagonal approximation and on the assumption
Ho. As a result, the spectrum &f contains the desired ei- .y giftractive orbits do not contribute. In particular the lat-

genvalues of8 and _those of its complemeliﬁo'— B. They ter assumption is questionable because diffraction is an im-
can be separated with the help of an appropriate observabl ortant mechanism in the development of intermediate sta-

and in some cases, e.g., the Sinai billiard, and the examplgfics - Unfortunately, numerical studies could not confirm

cor\1/\s/|d_e”red below, the s;:pgrat!%n IS given belforehhan(g. __those results with the desirable clarity, since the convergence
e lllustrate our method with two examples, the barriery, o semiclassical limit is very slow. For example in the

billiard [3], and the right triangle billiarg4] with acute angle case of the barrier billiard one obtais=0.34 in the region

/5. Both examples are two-dimensional, pseudointegrablse,[ween level number 400 000 and 420 000. while the semi-
polygon billiards[4,5]. While pseudointegrable systems have |5ssical prediction ig=1/2 [10] '

enough constants of motion to assure local integrability, sin- As shown below, our method is almost ideally suited for
gularities in the Hamiltonian flow allow invariant surfaces he calculation of th’e number variance for latgeTherefore
with genus larger than one. This introduces some kind o e are able to calculate the level compressibility at much

rLandomness Into tt_he clalstswal dynamlcsr,] tho#ﬁh th‘ﬁigher energies and with better statistics. In the case of the
yapunov exponent Is equal to zero, everywhere. 1he NoNgajar pijliard, for example, we calculate number variances

standard topology of the invariant surfaces leads to an algqh the region of absolute level numbaf>1.6x 107 within

bra}|rc]: ?Asper?rlict)n ?f ne?qrtbyzntra?ect?nﬁl&]. o ndence. th &n energy interval which contains abouf 16vels.
€ spirit of quantum-ciassical correspondence, nere o oy e only sketch the general meth@ddetailed pre-

have b_een numerous efforts to study the implications 0fsentation will be published elsewhg¢réAssume, that the
pseudointegrability on the quantum spectrlitb,7-10. In HamiltonianH can be approximated by a projection on an

Refs.[8,11]] it is conjectured that the statistical properties of propriately chose-dimensional Hilbert space<c.

; L . . >~ a
pseudointegrable billiards are intermediate between Pmsso&fésume further that its matrix representation is of the follow-
ing form:

*Electronic address: Thomas.Gorin@physik.uni-freiburg.de H=H,+nV Vil (1)
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HereV is aNXxXM matrix with mutually orthogonal column spectrum of the barrier billiard. In what follows we s&f
vectors, M<N, and is a positive parameter. Such a repre- =a/2,c=b/2, wherea= 27?3 andb=6/7'2. In this way,
sentation can be obtained, for instance, by diagonalizing se obtain the same spectrum as in R&f)]. In this case the
non-negative perturbation of small rakk Then, in general, trivial componentS, of the spectrum corresponds to states
the spectrum oH consists of a trivial componer8,, con- ¥, with a node line ak=a/2. In order to obtain the non-
tained in the spectrum dfly, and a nontrivial, disjoint com- trivial component alone, we require the eigenstates to be re-
ponentS;. The eigenvalues irB; are roots of the secular flection symmetric with respect to that line. In other words,
equation we consider the spectrum of a new rectangle billiard with
sidesa/2 andb, which has Dirichlet boundaries everywhere,
except for the boundary segment between the points
(a/2,b/2) and @/2b), which is a von Neumann boundary.

To obtain the decompositiow=V V', we calculate all
where diniK(E)]=M [1]. Equation(2) can be considered eigenvectors ofV which correspond to nonzero eigenvalues.
as an eigenvalue equatidG(E)x=8x, where one of the This is rather simple becaust is separable in th& andy

def1—7K(E)]=0, K(E)=V"

E_H, @

eigenvalues must be equal ig ®. modes of the eigenfunctions éf,
Differentiating K(E) with respect to the energy gives a _ _
negative definite matrix. This shows that the eigenvalues of VW =s(mAl, s(m)=sin(7m/2), (6)

K(E) are monotonously decreasing. The eigenvaluell pf

coincide with the positions of the poles K{E). Therefore, Sna

'A(a) \/Ea (_)[H—n

each time the energy moves across a pole, a new eigenvalue A(zﬁ):—7 an-17" 7 5 2 ()
of K(E) appears at-. The eigenvalue decreases with en- ‘/5 a"—(n-172)

ergy, until it reaches the value 71/ At this point the secular ;

equation(2) has a root. Beyond this point, the eigenvalueFOr the matrix elements df(E) we get

continues to decrease, until it disappears-at. This behav- Vﬁﬁ%VE{ﬁZ o s(m)2

ior gives rise to the followingsum rule Let ny(n,;) denote Kag(E) =2 - => AE]“)ASF)E_—. (8)
the number of eigenvalues oK, larger than 1%, at mn €mn  mn €mn

E=Ey(E,), and letN, denote the number of poles ahy
the number of roots of dgk(E)] in the interval Eq,E,).
Then it holds

Taking the limit m—o, we can evaluate the sum ovar
analytically

B a’ o
no+Np—N,=n;. 3 Kap(E)= 5 2 AAPIG(E), ©

This relation can be used to bracket the eigenvalues; jn

before using a standard root searching algorithm to obtaiwith G,(E)= —tan(wz,/2)/z,. Here, z, is the effective
the desired accuracy. In this case, E8) assures that no quantum number foH, at given energyE, i.e., (z,7/a)?
eigenvalues are overlooked. However, if only long range cor-+ (nw/b)?=2E. Note thatG,(E) remains real, even for
relations are of interest, one can do even better. It may theimaginary z,. We may introduce the orthogonal matrix

be sufficient to calculate the level counting function at thea = 2A{" . and truncating the sum in Eq9) at n
points of a previously defined grid, with possibly quite large — M, we obtain
spacings.
To calculate the spectrum of the barrier billidrtD], we a?
choose aH, the Hamiltonian of a rectangle billiard with K(E)=,_(A GOUAT+ G, (10)

sides of lengtha andb. With the origin of a Cartesian coor-
dinate system fixed at one of the corners, the normalizegyith G°d=diag G,, ,(E)], and Ge"=diagd G,,(E)].

eigenfunctions are Multiplying Eq. (10) from left and/orTright byATTand/orA,
1 . one can construct the variants=A'K, K'=A'KA, and
Wime(x,Y) =2(ab)Hsin( amx/a)sin(mny/b), (4 L'=KA. All of them can be used to find the eigenvalues of
while & ,,=[(m/a)2+ (n/b)2]=2/2 are the corresponding ei- the barrier billiard. However, the matric&q E) a_ndK’(E) _
genvalues. We use units, in which the mass and Planck@'€ real and symmetric, and hence easy to diagonalize. Fi-
constant: are both equal to one. The perturbation consists offly; due to faster numerical convergence, we opted for
an additional boundary segment inside the billiard, connectK’ (E)-

ing the points &,,0) and @y,c). It is modeled by a potential In what follows, we .ai'm ata .precise, numerical estimate
well with 6-shaped profile for the level compressibility, which can be compared to the

analytical results obtained in Refsl0,11]. To this end, we
H=Hy+7W, W=(a/2)d(x—ag)é(c—Yy), (5) compute the level counting function on a finite grid
No, L, L Of consecutive intervals of lengthy, starting at
where 8(x) is the usuals function, andé(y) is the unit step N, and ending atVy+ L. The grid is defined on the un-
function. As 7 increases from 0 toe, the spectrum oH folded energy axis, where the average level spacing is equal
changes from the spectrum of the rectangle billiard to thdéo one. It is then mapped onto the physical energy axis, by
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TABLE |. Data sets for the barrier billiard. TABLE Il. Data sets for the right triangle billiarda(= 7/5).
A (B) © (D) (T1) (T2) (T3)
No=8X10° 2x10° 8x10° 1.6x 107 No=4X10° 10° 4x10°
L= 10° 1.4x10° 10° 10° Lii=4x 10 10° 10°

inverting Weyl's law [18]: 47 ME)=ab E—(a+b) J2E plains the discrepancy between the numerical estimate for
+ /4. We count the number of levels in each interval, usingthe level compressibility obtained in R¢flL0], and the the-

Eq. (3). The data sets, listed in Table I, are produced in thicoretical expectation. For>0.01 the scaled number variance
way. They are used to calculate the number varidht@. ) looks perfectly linear, and one is easily lead to assume that

at integer multiples of 4= 10. the linear behavior continues down to the poirt0. How-

The number variancB?(L) saturates at~L,, Which  €ver, forx<0.01, the slope changes drastically, and a second
is related to the inverse period of the shortesmndiffractive ~ linear regime appears. There, the scaled number variance
periodic orbit[19]. For our barrier billiard g(x) approaches the theoretical predictigrr 1/2 asx—0.

In order to put our findings on a quantitative basis, we con-
L mas= V27 Ny bla= 18N,/ . (11)  sider the following phenomenological parametrization:
Therefore, the rati®?(L)/L being constant at &L <L g(x)=ap—a;x+(ag—az)exp—asx). (13

starts to decrease whenapproaches .. We expect that
S2(L)/L plotted versusL/L ., depends only weakly on
Lmax, and hence onV,. We call this function thescaled

number variance

Its form is such that both linear regimes are reproduced.
While ay=g(0) gives the best estimate for in the semi-
classical limit,a, would be the result in the absence of data
points withx<<0.01. For the fit, all data sets in Table | are
9(X) = S2(L masX)! (L maxX)- (12)  taken into account, up to=0.2. Beyond this pointwhich is
outside the interval shown in Fig) the parametrizatiofil3)
For integrable and pseudointegrable systems, it is expectdeaks down. Using the nonlinear least squares Marquardt-
that the ratics?(L)/L becomes constant &sis increased. In ~ Levenberg algorithni20], we obtain the following estimates:
practice, convergence is quite fast, and it turned out that
~10 is sufficient for our purposes. The semiclassical limit
Ny— is the really difficult one. There, the level compress-
ibility must be estimated by extrapolatiog=lim,_,o g(X).
Figure 1 shows the scaled number variance for the data.
sets given in Table I. For the error bars, we estimated that th¥/th @ reducedy” value of xji/ f~0.54 (the number of de-
relative error is approximately equal to Y16/L,,. To obtain grees of freedom '$:3_05)' . . .
this value, we computed the variance of the distribution of W'th 3y, we have finally obta_m_e_d a precise n_umerlpal
different partial averages, fitting them with a normal distri- €Stimate for the. "?Ve' com.pressmmty in the sem|c!aSS|caI
bution. Note thatL /L gives the number of independent limit. It agrees within a relative error of roughly 2% with the

level counts in the energy range considered. Figure 1 e)g_hzeqrethal resuly=1/2. In Ffldd'tlon' the moderate value for
Xiit IS quite remarkable. It gives some support to the assump-

a,=0.500891), a,=1.07718),

a,=0.386G17), as—36439), (14)

05 . : , : tion that within the statistical error, the scaled number vari-
(A) ance is independent of the energy regifor x<0.2).
0.45 { ®) ] In what follows, we repeat the numerical analysis for the

© 7/5-right triangle billiard. For this system, the mati(E)

D) —ea—

a4t ® ; has been calculated in RdfL]. The length scaléd ., for
~ the saturation of the number variance, is here about 2.6 times
= 035¢ smaller than for the barrier billiard
N
A

03 | Lma= V27 N/ (8 sin2a)  a= 75, (15

0.25 ¢ We calculated three data sets in different energy regions, as

listed in Table 1l L=10, as before With all data sets, we
0 0.02 0.0 0.06 0.08 04 fit the scaled number variangéx) using the parametrization
L/Lumax §13), e>§cluding again all data points witt>0.2. The result-

Ing estimates are

FIG. 1. The scaled number varianE&(L)/L vs x=L/L ya for

the data sets in Table I. For clarity, only some of the data points are a,=0.538%57), a;=0.95837),
plotted. The thick solid line gives the fit functia(x) with param-
eters as given in Eq14). a,=0.415454), a3z=46.25.9), (16)
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0.55 nounced. Though the agreement of the extrapolated value for
g(0) with the theoretical expectatiop=5/9[17] is not per-
051 fect, our estimate is very close to it. Note that the error esti-
0.45 b mates in Eq(16) are also based on statistical data. In par-
- ticular in the case ofa,, there are only relatively few
>~ 04} relevant data points, which leads to rather large uncertainties.
= We advanced the technique, recently proposed in[Rgf.
Ty 0857 to solve the Schidinger equation for perturbations of low
0al rank. As a new result, we derivedsam rule which allows to
obtain the level counting function directly from the secular
0.25 | equation. Systems involving short range interactions and
general quantum billiards may be good candidates for future
02 0.05 o1 015 02 applications. In this paper, we considered two pseudointe-

L/Lax grable billiards: the barrier billiard and the/5-right triangle
billiard. In spite of their apparent simplicity, the spectral sta-
FIG. 2. The scaled number variance for the data sets in Table Ifistics is only hardly understood. We performed extensive
Only a subset of the data points is plotted. The solid line gives thewumerical calculations for the number varianZ&(L),L
fit g(x) with parameters as given in E(L6). >1 in energy regions up tavV>1.6x 10’ (for the barrier
billiard) and V>4 x 10° (for the right triangle billiarg. With
the help of the scaled number variance, we obtained very
merical results fog(x), and the fit with Eq(13), are plotted preqise estimgtes for Fhe level compressibi_lity. In contrast to
in Fig. 2. For the error bars, we have checked that the sam%arller numerlcal studies, t_hey Igrge_ly confirm the 'analytlcal
approximation holds as in the case of the barrier billiard. The“?su'ts' Th|s shqws that 'dlffl’aCtI(')n.IS hot the basic mecha-
absolute errors are smaller here, because the data sets qrm leading to intermediate statistics.
taken at lower energies. As in Fig. 1, we find two linear T.G. thanks L. Kaplan and T. Papenbrock for stimulating
regimes with different slopes. However, the initial slope isdiscussions at the Centro Internacional de Ciencas in Cuer-
less steep, and the transition occurs somewhat latex, at navaca, Mexico, and the EU Human Potential Program Con-
~0.04. Thus, the overall change in the graph is less protract No. HPRN-CT-2000-00156 for financial support.

with a reducedy? value of yz/f~0.20 (f=61). The nu-
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